
PRACTICAL 1

AIM: Write a program to categorize each word as keyword or identifier

CODE:

1: #include <iostream>

2: #include <fstream>

4: #include <string.h>

6: using namespace std;

8: int main()

9: {

10: ofstream mayank;

11: char data[50];

12: char char1;

13: string filedata;

14: string spaceless;

15: int i;

16: char keywords[5][10] ={"double", "int" , "void" , "return", "float"

17: char store[10][10];

18: char identifier[10][10];

22: mayank.open("cfile.c");

23: cout<<"writing to the file at the end write @ "<<endl;

25: while(data[0] != '@')

26: {

27: cin.getline(data,100);

28: if(data[0] != '@')

29: mayank<<data<<endl;

30: }

31: mayank.close();

33: ifstream mayank1;

34: mayank1.open("cfile.c");

36: cout<<"reading from file"<<endl;

37: filedata=" ";

38: while(!mayank1.eof())

39: {

40: mayank1.getline(data,50);

42: filedata = filedata +" "+ data;

44: }

47: int flag;

48: for(i=2;i<filedata.length();i++)

49: {

50: if(filedata[i] == ' ')

51: { flag=i;

52: while(filedata[i] == ' ')

53: {

54: i++;

55: }

56: if(flag!=2)

57: {

58: char1=' ';

59: spaceless.append(sizeof(char1),char1);

60: }

61: char1=filedata[i];

62: spaceless.append(sizeof(char1),char1);

64: }

66: else{

67: char1=filedata[i];

68: spaceless.append(sizeof(char1),char1);

69: }

70: }

73: //comparisoion

74: string temp;

75: int x=1,j=0,k=0,flag2;

76: int identi=0;

79: for(i=0;i<spaceless.length()-1;i++)

80: {flag2=0;

81: temp.clear();

82:

83: if(i==0)

84: {

86: while(spaceless[i] != ' ') //copy word from one end to second

87: {

88: char1=spaceless[i];

89: temp.append(sizeof(char1),char1);

90: i++;

92: }

96: if(spaceless[i] == ' ') //comparisions

97: {

99: for(k=0;k<5;k++) //for keywords

100: {

101: x=temp.compare(keywords[k]);

103: if(x==0 && flag2==0)

104: {

105: flag2=1; // if comparisoion true

106: for(int z=0;z<temp.length();z++)

107: {

109: char1=temp[z];

110: store[j][z]=char1;

111: }

113: temp.clear();

114: j++; // for store array row change

116: }

117: }

119: if(flag2==0 && temp[0]!='{' && temp[0] !='}')

120: {

122: for(int z=0;z<temp.length() && temp[z]!=';' ;z++)

123: {

124: char1=temp[z];

125: identifier[identi][z]=char1;

126: }

128: temp.clear();

129: identi++;

131: }

134: }

136: }

140: else if(spaceless[i] !=' ')

141: {

142: while(spaceless[i] != ' ') //copy word from one end to 143: {

144: char1=spaceless[i];

145: temp.append(sizeof(char1),char1);

146: i++;

148: }

150: if(spaceless[i] == ' ') //comparisions

151: {

153: for(k=0;k<5;k++) //for keywords

154: {

155: x=temp.compare(keywords[k]);

157: if(x==0)

158: {

159: flag2=1; // if comparisoion true

161: for(int z=0; ((z<temp.length()) && (temp[z] !=';'

162: {

163: char1=temp[z];

165: store[j][z]=char1;

166: }

168: temp.clear();

169: j++; // for store array row change

171: }

173: }

175: if(flag2==0 && temp[0]!='{' && temp[0] !='}')

176: {

178: for(int z=0;((z<temp.length()) && (temp[z] !=';'));z

179: {

180: char1=temp[z];

181: identifier[identi][z]=char1;

182: }

184: temp.clear();

185: identi++;

188: }

190: }

193: }

195: }

198: cout<<"keywords are :"<<endl;

199: for(int z=0;z<j;z++)

200: {

201: cout<<store[z]<<endl;

202: }

204: cout<<"identifier are :"<<endl;

205: for(int z=0;z<identi;z++)

206: {

208: cout<<identifier[z]<<endl;

209: }

210: mayank1.close();

212: return 0;

213: }

PRACTICAL 2

AIM: Write a program check whether parentheses are balanced or not.

CODE:

1: // Parenthesis
2: #include<iostream>
3: #include<string.h>
4: #include<fstream>

6: using namespace std;
7: char stack[100];
8: int TOP=-1;
10: class s{
11: public:
12: char pop()
13: {char temp;
14: if(TOP !=-1) { temp=stack[TOP]; TOP--;}
15: else
16: cout<<"stack is empty";
17: return temp;
18: }
20: char push(char x) {
22: if(TOP <100)
23: {TOP++;
24: stack[TOP]=x; } }
28: char peep()
29: {return stack[TOP];} };
33: int main()
34: {
35: ofstream mayank;
36: char data[50];
37: char char1;

38: string filedata;
39: string spaceless;
40: int i;
41: s stack;
42: mayank.open("parenthes.txt");
43: cout<<"writing to the file at the end write @ "<<endl;
44: while(data[0] != '@')
45: {
46: cin.getline(data,100);
47: if(data[0] != '@')
48: mayank<<data<<endl;
49: }
50: mayank.close();
51: ifstream mayank1;
52: mayank1.open("parenthes.txt");
53: cout<<"reading from file"<<endl;
54: filedata=" ";
55: while(!mayank1.eof())
56: {
57: mayank1.getline(data,50);
58: filedata = filedata +" "+ data;
59: }
60: //data saved in file data with extra space now i have to re
61: int flag;
62: for(i=2;i<filedata.length();i++)
63: {
64: if(filedata[i] == ' ')
65: { flag=i;
66: while(filedata[i] == ' ')
68: i++;
70: if(flag!=2)
71: {
72: char1=' ';
73: spaceless.append(sizeof(char1),char1);
74: }

75: char1=filedata[i];
76: spaceless.append(sizeof(char1),char1);
77: }
78: else{
79: char1=filedata[i];
80: spaceless.append(sizeof(char1),char1);
81: } }
83: cout<<spaceless;
84: for(i=0;i<spaceless.length()-1;i++) {
86: if(spaceless[i]=='(')
 stack.push('(');
90: else if(spaceless[i]==')')
91: { if(stack.peep()=='(')
92: stack.pop();
94: else
95: {stack.push(')');
96: cout<<"\n not balanced";
97: goto label;
98: } } }
101: if(TOP==-1)
102: cout<<"\n is balanced";
104: else
105: cout<<"\n not balanced";
107: label:
108: return 0; }

OUTPUT:

PRACTICAL 3

AIM: Write a program to implement symbol table.

CODE:

#include<stdio.h>

#include<string.h>

#include<conio.h>

#include<ctype.h>

FILE *fp;

char delim[18]={' ','\t','\n',',','(',')','[',']','{','}','#','+','-','*','/','%','=','!'};

char key[21][12]={"int","float","char","double","bool","void","extern","auto",

"bool","goto","static","class","struct","for","if","else","return","register","long","w

hile","do"};

char ctype[12];

char avoid[5][12]={"include","define","getch","printf","scanf"};

struct symtab

{ char id[20];

 char type[20];

}p[30];

int in=0;

void construct();

int isdelim(char);

void check(char[]);

int checkkey(char[]);

void showtable();

void main()

{

 char fname[12];

 clrscr();

 printf("\nEnter the filename : ");

 scanf("%s",fname);

 fp=fopen(fname,"r");

 if(fp==NULL)

 printf("\nThe file doesn't exist.");

 else{construct();

 showtable();}

 fclose(fp);

 getch();

}

void construct()

{char c,ch,token[12];

int f=0,j=0,kf=0;

strcpy(ctype,"NULL");

while(!feof(fp))

{c=getc(fp);

 if(c==';'||c=='(')

 {if(f==1)

 {token[j]='\0';j=0;f=0;

 kf=checkkey(token);

 if(kf==0)

 check(token);

 }

 strcpy(ctype,"NULL");

 }

 else if(c=='"')

 {

 while((c=getc(fp))!='"');

 }

 else if(c=='<')

 {

 while((c=getc(fp))!='>');

 }

 else if(isdelim(c))

 {

 if(f==1)

 {

 token[j]='\0';j=0;f=0;

 kf=checkkey(token);

 if(kf==0)

 check(token);}

 }

 else if(isalpha(c)||c=='_')

 {

 token[j++]=c;

 f=1;

 }

 }

}

int isdelim(char c)

{

 int i;

 for(i=0;i<18;i++)

 {

 if(c==delim[i])

 return 1;

 }

 return 0;

}

int checkkey(char t[])

{int i;

for(i=0;i<5;i++)

 if(strcmp(avoid[i],t)==0)

 return 1;

 for(i=0;i<21;i++)

 if(strcmp(key[i],t)==0)

 {strcpy(ctype,key[i]);

 return 1;}

 return 0;}

void check(char t[])

{

 int i;

 for(i=0;i<in;i++)

 { if(((strcmp(t,p[i].id))==0)&&((strcmp(ctype,p[i].type))==0))

 {

 printf("\nRedeclaration for '%s'",t);

 return 0;

 }

else

if(((strcmp(t,p[i].id))==0)&&((strcmp(ctype,p[i].type))!=0)&&((strcm

p(ctype,"NULL")!=0)))

 {

 printf("\nMultiple declaration for %s",t);

 return 1;

 }

 }

 if(strcmp(ctype,"NULL")==0)

 {for(i=0;i<in;i++)

 {if(strcmp(t,p[i].id)==0)

 return;

 }

 printf("\n%s Undeclared ",t);

 return 0;

 }

 strcpy(p[in].id,t);

 strcpy(p[in].type,ctype);

 in++;

}

void showtable()

{

 int i;

 if(in==0)

 {printf("\nSymbol table is empty.");

 return;}

 printf("\nSymbol table");

 printf("\n------------");

 printf("\nIdentifier\tType\tAddress");

 printf("\n----------\t----\t-------");

 for(i=0;i<in;i++)

 printf("\n%s\t\t%s\t%u",p[i].id,p[i].type,&p[i]);

}

OUTPUT:

PRACTICAL 4
AIM: Write a program to find whether leftrecursion in program and if it is remove it.

CODE:

1: //Left recursion Remove
2: #include<iostream>
3: #include<string.h>
4: #include<fstream>
6: using namespace std;
7: int main()
8: {
9: ofstream mayank;
10: int recursion,i;
11: char data[50],char1,d;
12: string filedata,spaceless,leftdata,rightdata;
14: mayank.open("string.txt");
15: cout<<"writing to the file at the end write @ "<<endl;
17: while(data[0] != '@')
18: {
19: cin.getline(data,100);
20: if(data[0] != '@')
21: mayank<<data<<endl;
22: }
23: mayank.close();

25: ifstream mayank1;
26: mayank1.open("string.txt");
28: cout<<"reading from file"<<endl;
29: filedata=" ";
30: while(!mayank1.eof())
31: {
32: mayank1.getline(data,50);
34: filedata = filedata +" "+ data;
36: }
39: //data saved in file data with extra space now i have to re
40: int flag;
41: for(i=2;i<filedata.length();i++)
42: {
43: if(filedata[i] == ' ')
44: { flag=i;
45: while(filedata[i] == ' ')
46: {
47: i++;
48: }
49: if(flag!=2) {
51: char1=' ';
52: spaceless.append(sizeof(char1),char1); }
54: char1=filedata[i];
55: spaceless.append(sizeof(char1),char1); }
59: else{
60: char1=filedata[i];
61: spaceless.append(sizeof(char1),char1); }}
64: recursion=0;
65: cout<<spaceless;
66: for(i=0;i<spaceless.length()-1;i++)
67: { if(spaceless[i]=='-' && spaceless[i+1]=='>')
69: { if(spaceless[i-1]==spaceless[i+2])
71: { d=spaceless[i-1];
72: recursion=1;
73: cout<<"Left Recursion occured";
74: break; } } }
79: i=i+3;

80: if(recursion==1){
82: while(spaceless[i]!='|')
83: {
84: char1=spaceless[i];
85: leftdata.append(sizeof(char1),char1);
86: i++; }
88: i+=1;
90: while(i<spaceless.length()-2)
91: { char1=spaceless[i];
93: rightdata.append(sizeof(char1),char1);
94: i++; }
96: cout<<endl;
97: cout<<d<<"->"<<rightdata<<d<<"'"<<endl;
98: cout<<d<<"'"<<"->"<<leftdata<<d<<"'"<<"|E"; } }

OUTPUT:

PRACTICAL 5

AIM: Write a program to perform left factoring on a grammar.

CODE:

#include<stdio.h>
#include<string.h>
void main()
{
char gram[20],part1[20],part2[20],modifiedGram[20],newGram[20],
tempGram[20];
 int i,j=0,k=0,pos;
 printf("Enter Production : A->");
 gets(gram);
 for(i=0;gram[i]!='|';i++,j++)
 part1[j]=gram[i];
 part1[j]='\0';
 for(j=++i,i=0;gram[j]!='\0';j++,i++)
 part2[i]=gram[j];
 part2[i]='\0';
 for(i=0;i<strlen(part1)||i<strlen(part2);i++){
 if(part1[i]==part2[i])
 {modifiedGram[k]=part1[i]; k++; pos=i+1;}}
 for(i=pos,j=0;part1[i]!='\0';i++,j++)
 {newGram[j]=part1[i];}
 newGram[j++]='|';
 for(i=pos;part2[i]!='\0';i++,j++){
 newGram[j]=part2[i];}
 modifiedGram[k]='X';
 modifiedGram[++k]='\0';
 newGram[j]='\0';
 printf("\n After performing left factoring...");
 printf("\n A->%s",modifiedGram);
 printf("\n X->%s\n",newGram);
 getch();
 }

PRACTICAL 6

AIM: Write a program to convert infix to postfix

CODE:

import java.io.*;

class Stack

 {

 char a[]=new char[100];

 int top=-1;

 void push(char c)

 {

 try

 {

 a[++top]= c;

 }

 catch(StringIndexOutOfBoundsException e)

 {

 System.out.println("Stack full , no room to push , size=100");

 System.exit(0);

 }

 }

char pop()

 {

 return a[top--];

 }

 boolean isEmpty()

 {

 return (top==-1)?true:false;

 }

char peek()

 {

 return a[top];

 }

}

public class JavaApplication43 {

 static Stack operators = new Stack();

 public static void main(String[] args) throws IOException {

 String infix;

 BufferedReader keyboard = new BufferedReader (new

InputStreamReader(System.in));

 System.out.print("\nEnter the algebraic expression in infix: ");

 infix = keyboard.readLine();

 System.out.println("The expression in postfix is:" + toPostfix(infix));

 }

 private static String toPostfix(String infix)

 {

 char symbol;

 String postfix = "";

 for(int i=0;i<infix.length();++i)

 {

 symbol = infix.charAt(i);

 //if it's an operand, add it to the string

 if (Character.isLetter(symbol))

 postfix = postfix + symbol;

 else if (symbol=='(')

 //push (

 {

 operators.push(symbol);

 }

 else if (symbol==')')

 //push everything back to (

 {

 while (operators.peek() != '(')

 {

 postfix = postfix + operators.pop();

 }

 operators.pop(); //remove '('

 }

 else

 //print operators occurring before it that have greater precedence

 {

 while (!operators.isEmpty() && !(operators.peek()=='(') &&

prec(symbol) <= prec(operators.peek()))

 postfix = postfix + operators.pop();

 operators.push(symbol);

 }

 }

 while (!operators.isEmpty())

 postfix = postfix + operators.pop();

 return postfix;

 }

 static int prec(char x)

 {

 if (x == '+' || x == '-')

 return 1;

 if (x == '*' || x == '/' || x == '%')

 return 2;

 return 0;

 }

}

OUTPUT:

Enter the algebraic expression in infix: a+b+c

The expression in postfix is: ab+c+

PRACTICAL 7

AIM:Write a program to build triplet for given equation

CODE:

#include<stdio.h>

#include<conio.h>

#include<string.h>

void pm();

void add();

void div();

int i,j,l,address=100;

char ex[10],exp[10],exp1[10],exp2[10],id1[5],op[5],id2[5];

int main()

{

 printf("\n enter expression:");

 scanf("%s",ex);

 strcpy(exp,ex);

 l=strlen(exp);

 exp1[0]='\0';

 for(i=0;i<l;i++)

 {

 if(exp[i] == '+' || exp[i] == '-')

 {if(exp[i+2] == '/' || exp[i+2] == '*')

 {pm();break;}

 else{add();

 break;}}

else if(exp[i] == '/' || exp[i] == '*')

{div();

break;

}}}

void pm()

{strrev(exp);

j=l-i-1;

strncat(exp1,exp,j);

strrev(exp1);

printf("triplet:\ntemp=%s\ntemp1=%c%ctemp\n",exp1,exp[j+1],exp[j]);}

void div()

{strncat(exp1,exp,i+2);

printf("triplet:\ntemp=%s\ntemp1=temp%c%c\n",exp1,exp[i+2],exp[i+3]);}

void add()

{strncat(exp1,exp,i+2);

printf("triplet:\ntemp=%s\ntemp1=temp%c%c\n",exp1,exp[i+2],exp[i+3]);}

OUTPUT:

PRACTICAL 8
AIM : Write a C program to input an assembly program and prepare mnemonic and

symbol table.

 CODE:

#include<stdio.h>

#include<conio.h>

#include<string.h>

void main()

{

FILE *f1,*f2,*f3,*f4;

int lc,sa,l,op1,o,len;

char m1[20],la[20],op[20],otp[20],s,s1;

clrscr();

f1=fopen("input.txt","r");

f3=fopen("symtab.txt","w");

fscanf(f1,"%s %s %d",la,m1,&op1);

if(strcmp(m1,"START")==0)

{

sa=op1;

lc=sa;

printf("\t%s\t%s\t%d\n",la,m1,op1);

 }

else

lc=0;

fscanf(f1,"%s %s",la,m1);

while(!feof(f1))

{

fscanf(f1,"%s",op);

printf("\n%d\t%s\t%s\t%s\n",lc,la,m1,op);

if(strcmp(la,"-")!=0)

 {

fprintf(f3,"\n%d\t%s\n",lc,la);

 }

 f2=fopen("optab.txt","r");

fscanf(f2,"%s %d",otp,&o);

while(!feof(f2))

 {

if(strcmp(m1,otp)==0)

 {

lc=lc+3;

break;

 }

fscanf(f2,"%s %d",otp,&o);

 }

fclose(f2);

if(strcmp(m1,"WORD")==0)

 {

lc=lc+3;

 }

else if(strcmp(m1,"RESW")==0)

 {

 op1=atoi(op);

lc=lc+(3*op1);

 }

else if(strcmp(m1,"BYTE")==0)

 {

if(op[0]=='X')

lc=lc+1;

else

 {

len=strlen(op)-2;

lc=lc+len;}

 }

else if(strcmp(m1,"RESB")==0)

 {

 op1=atoi(op);

lc=lc+op1;

 }

fscanf(f1,"%s%s",la,m1);

 }

if(strcmp(m1,"END")==0)

 {

printf("Program length =\n%d",lc-sa);

 }

fclose(f1);

fclose(f3);

printf("\n----Symbol table----");

 f3=fopen("symtab.txt","r");

do{

 s=getc(f3);

printf("%c",s);

}while(s!=EOF);

fclose(f3);

printf("\n----Mnemonic table----\n");

 f2=fopen("optab.txt","r");

do{

 s1=getc(f2);

printf("%c",s1);

}while(s1!=EOF);

fclose(f2);

getch();

 }

OUTPUT:

PRACTICAL 9

AIM: Write a program to find unused variables.

CODE:

import java.io.BufferedReader;

import java.io.File;

import java.io.FileNotFoundException;

import java.io.FileReader;

import java.io.IOException;

public class JavaApplication45 {

 public static void main(String args[]) throws IOException {

 int i, j;

 File f = new File("C:\\file.txt");

 FileReader fr = new FileReader(f);

 BufferedReader b = new BufferedReader(fr);

 String temp = "";

 String line;

 while ((line = b.readLine()) != null) {

 temp = temp.concat(line).concat("\n");

 }

 System.out.println(temp);

 String p[] = temp.split("\n");

 String p1[] = p[2].split(" ");

 String p2[] = p1[1].split("[\\,\\;]");

 String p3[] = p[3].split("[\\=\\+\\;]");

 for (i = 0; i < p2.length; i++)

 {

 System.out.println(p2[i]);

 }

 for (i = 0; i < p3.length; i++)

 {

 System.out.println(p3[i]);

 }

 int flag;

 for (i = 0; i < p2.length; i++) {

 flag = 0;

 for (j = 0; j < p3.length; j++) {

 if (p2[i].equals(p3[j])) {

 flag = 1;

 break;

 }

 }

 if (flag == 0)

 System.out.println(p2[i] + " is not used");

 }

 }

}

OUTPUT:

int main

{

int x,y,z;

y=5;

}

x

y

z

y

5

x is not used

z is not used

 PRACTICAL 10

 AIM: Write a program to check following syntax error.

1. Semicolon missing

2. Operator missing

3. Variable not declared.

CODE:

import java.util.*;

public class Test

{

 public static void main(String args[]){

String input=”void main()\n{\nint a,b,c;\nprintf(\”hello world”\)\na+b\n}”;

System.out.println(input+”\n”);

For(int i=0;i<sarr.length;i++){

 If(!(sarr[i].contains(“()”))){

If(sarr[i].equals(“{“) ||sarr[i].equals(“}”))

{

}

else

{

 If(!sarr[i].rndWith(“;”)))

{

 System.out.println(“Semicolon missing error “);

} } }

int flag=1;

String subinput = sarr[2].substring(4,sarr[2].indexOf(“;”));

String[] subarr = subinput.split(“,”);

String[] s1arr = sarr[4].split(“=”);

for(int i=0;i<subarr.length();i++)

{

 for(int j=0;j<s1arr.length();j++)

 {

 If(!(subarr[i].equals(s1arr[j]))){ flag=i;}

}

}if(flag!=-1){

System.out.println(“Operator error”);

}

}

OUTPUT:

 Void main()

{

int a,b,c;

printf(“hello world”)

a+b

}

Semicolon missing error

Semicolon missing error

